
Cobalt(II) Phthalocyanine Substituents Tune the Electrocatalytic CO₂ Conversion to Methanol
Barakat, M.; Fosu, E. A.; Jakubikova, E. Cobalt(II) Phthalocyanine Substituents Tune the Electrocatalytic CO2 Conversion to Methanol, Inorg. Chem., 2025, In press. https://doi.org/10.1021/acs.inorgchem.5c02279.

CO Reduction to Ethylene and Cyclopropane via a Trappable Ruthenium Methylidene
Smith, A.; Tereniak, S.; Cox, H.; Massey, M.; Schauer, C.; Miller, A. CO Reduction to Ethylene and Cyclopropane via a Trappable Ruthenium Methylidene, J. Am. Chem. Soc., 2025, In press. https://doi.org/10.1021/jacs.5c11327.

Photoelectrochemical Hydride Generation with Oxide-Coated Silicon
Nedzbala, H. S.; Powers, R. E.; Knapp, A. S.; Yang, H.; Gentile, R.; Vecchi, P.; Dickenson, J. C.; Sirlin, J. T.; Donley, C. L.; Chua, K.; Griffin, P.; Müller, A. V.; Sampaio, R. N.; Jackson, M. N.; Parsons, G. N.; Concepcion, J. J.; Cahoon, J. F.; Meyer, G. J.; Miller, A. J. M.; Dempsey, J. L.; Mayer, J. M. Photoelectrochemical Hydride Generation with Oxide-Coated Silicon, J. Am. Chem Soc., 2025, In Press. https://doi.org/10.1021/jacs.5c08666

Reversible Interfacial Hydride Transfer as a Complementary Tool To Measure Molecular Hydricity
Chung, H. W.; Wang, H.-C.; Desai, S. P.; Müller, A. V.; Sena, S.; Glusac, K. D.; Concepcion, J. J.; Surendranath, Y. Reversible Interfacial Hydride Transfer as a Complementary Tool To Measure Molecular Hydricity, J. Am. Chem. Soc., 2025, In press. https://doi.org/10.1021/jacs.5c09582

Reliable pKₐ Prediction through Efficient Incorporation of Anharmonicity within the Nuclear–Electronic Orbital Framework
You, J. M.; Chow, M.; Paenurk, E.; Hammes-Schiffer, S. Reliable pKa Prediction through Efficient Incorporation of Anharmonicity within the Nuclear–Electronic Orbital Framework, J. Am. Chem. Soc., 2025, In press. https://doi.org/10.1021/jacs.5c11332

Molecular Modifications of Crystalline Poly(triazine imide) for Advancing Its Structure–Property Relationships in Light-Driven Catalysis
McGuigan, S.; Donley, C. L.; Ortega Ortiz, E.; O’Donnell, S.; Pauly, M.; Hockaday, W. C.; Stach, E. A.; Maggard, P. A. Molecular Modifications of Crystalline Poly(triazine imide) for Advancing Its Structure–Property Relationships in Light-Driven Catalysis, Chem. Mater., 2025, In press. https://doi.org/10.1021/acs.chemmater.5c01007
![A new synthetic method of [Ru(2,2′:6′,2″-terpyridine)(2,2′-bipyridine)Cl]⁺ complexes using cis-[Ru(2,2′:6′,2″-terpyridine)(NCCH₃)₂Cl]⁺ as an intermediate and comparison…](https://images.squarespace-cdn.com/content/v1/62a2221d5a239f16b5de994f/1760369416089-CVR3TWTM9UPWQNN1QWCL/1-s2.0-S0020169325003585-ga1_lrg.jpg)
A new synthetic method of [Ru(2,2′:6′,2″-terpyridine)(2,2′-bipyridine)Cl]⁺ complexes using cis-[Ru(2,2′:6′,2″-terpyridine)(NCCH₃)₂Cl]⁺ as an intermediate and comparison…
Tereniak, S. J.; Butler, B. J. A new synthetic method of [Ru(2,2′:6′,2″-terpyridine)(2,2′-bipyridine)Cl]⁺ complexes using cis-[Ru(2,2′:6′,2″-terpyridine)(NCCH₃)₂Cl]+ as an intermediate and comparison to a method using [Ru(benzene)(2,2′-bipyridine)Cl]⁺ intermediates, Inorg. Chim. Acta, 2025, 589, 122892, https://doi.org/10.1016/j.ica.2025.122892.

Constrained nuclear–electronic orbital method for periodic density functional theory: Application to H₂ chemisorption on Si(001) surfaces
Liu, S.; Xu, J.; Kanai, Y. Constrained Nuclear-Electronic Orbital Method for Periodic Density Functional Theory: Application to H2 Chemisorption on Si(001) Surfaces, J. Chem. Phys., 2025, 163, 084110. https://doi.org/10.1063/5.0278375

Unexpected Hydricity of a Bis-Carbene Iridium Complex Provides Insight into Electronic Structure Impacts on Hydride Donor Ability
Travis, B. D.; Ertem, M. Z.; Hearne, W. A.; Gonell, S.; Miller, A. J. M. Unexpected Hydricity of a Bis-Carbene Iridium Complex Provides Insight into Electronic Structure Impacts on Hydride Donor Ability, Inorg. Chem., 2025, 64 (34), 17255–17265. https://doi.org/10.1021/acs.inorgchem.5c02249

Regeneration of Benzimidazole-Based Organohydrides Mediated by Ru Catalysts
Müller, A. V.; Desai, S. P.; Cappuccino, C.; Donley, C. L.; Miller, A. J. M.; Mayer, J. M.; Grills, D. C.; Polyansky, D. E.; Concepcion, J. J. Regeneration of Benzimidazole-Based Organohydrides Mediated by Ru Catalysts, ACS Catal., 2025, 15, 14996-15008. https://doi.org/10.1021/acscatal.5c01872

Substituents effects on the electrocatalytic CO₂ reduction by cobalt corroles in solution
Kumar, S.; Fernández, S.; Saltsman, I.; Fridman, N.; Mahammed, A.; Miller, A. J. M.; Gross, Z. Substituents effects on the electrocatalytic CO₂ reduction by cobalt corroles in solution, Chem. Commun., 2025, 61, 12924-12927. https://doi.org/10.1039/D5CC02717A

Catalytic Hydrogenation of a Ruthenium Carbonyl to Formyl Enabled by Metal–Ligand Cooperation
Smith, A. M.; Fernández, S.; Tereniak, S. J.; Ahmad, S.; Kumar, A.; Chen, C.-H.; Hazari, N.; Ertem, M. Z.; Miller, A. J. M. Catalytic Hydrogenation of a Ruthenium Carbonyl to Formyl Enabled by Metal–Ligand Cooperation, ACS Catal.2025, 15 (15), 13526–13533. https://doi.org/10.1021/acscatal.5c03137

In Situ Characterization of Surface Recombination in p-Si/SiOₓ Based Photoelectrochemical Cells
Vecchi, P.; Dickenson, J. C.; Gentile, R. J.; Powers, R. E.; Dempsey, J. L.; Grills, D. C.; Cahoon, J. F.; Sampaio, R. N.; Meyer, G. J In-situ Characterization of Surface Recombination in p-Si/SiOx Based Photoelectrochemical Cells. ACS Electrochemistry 2025, In Press. https://doi.org/10.1021/acselectrochem.5c00098

A Rhenium Bis-tetramethylphenanthroline Catalyst for CO₂ Reduction to Formate
Alameh, R.; Arteta, S.; Fernández, S.; Barakat, M.; Asempa, E.; Atallah, H.; Durand, N.; Gillis, C.; Assaf, E.; Jakubikova, E.; Miller, A.; Castellano, F. A Rhenium Bis-Tetramethylphenanthroline Catalyst for CO2 Reduction to Formate, Energy & Fuels, 2025, 39(26), 12667-12675. https://doi.org/10.1021/acs.energyfuels.5c01212
Illuminating the mechanistic impacts of an Fe-quaterpyridine functionalized crystalline poly(triazine imide) semiconductor for photocatalytic CO₂ reduction
McGuigan, S.; Tereniak, S.; Smith, A.; Jana, S.; Donley, C. L.; Collins, L.; Ghorai, N.; Xu, Y.; Adu Fosu, E.; Suhr, S.; Margavio, H. R. M.; Yang, H.; Parsons, G.; Holland, P.; Jakubikova, E.; Lian, T.; Maggard, P. A. Illuminating the mechanistic impacts of an Fe-quaterpyridine functionalized crystalline poly(triazine imide) semiconductor for photocatalytic CO2 reduction, Inorg. Chem. Front., 2025, Advance Article. https://doi.org/10.1039/D5QI00859J

Photochemical Ligand-Based CO₂ Reduction Mediated by Ruthenium Formyl Species
Desai, S. P.; Müller, A. V.; Cappuccino, C.; Polyansky, D. E.; Grills, D. C.; Ertem, M. Z.; Concepcion, J. J. Photochemical Ligand-Based CO2 Reduction Mediated by Ruthenium Formyl Species, J. Am. Chem. Soc., 2025, 147(26), 22725–22733. https://doi.org/10.1021/jacs.5c04611

Fullerene Promotes CO₂ Reduction to Methanol by a Cobalt(II) Phthalocyanine Electrocatalyst
Fosu, E. A.; Deegbey, M.; Jakubikova, E. Fullerene Promotes CO2 Reduction to Methanol by a Cobalt(II) Phthalocyanine Electrocatalyst, Inorg. Chem., 2025, 64(24), 12390-12401. https://doi.org/10.1021/acs.inorgchem.5c02178

Automation of the Marangoni Effect for Making Well-Ordered and Transferable Colloidal Monolayers at the Air–Water Interface
Sheehan, C. J.; Gao, T.; Xiao, L.; Venkatesan, S.; Mallouk, T. E. Automation of the Marangoni Effect for Making Well-Ordered and Transferable Colloidal Monolayers at the Air-Water Interface. 2025, Langmuir, 41(23), 14880-14888. https://doi.org/10.1021/acs.langmuir.5c01014

Immobilizing a Lehn-Type Catalyst with Nitrocyclocondensation Chemistries: CO₂ Reduction on Silicon Hybrid Photoelectrodes
Orr, A. D.; Zhu, Z.; Durand, N.; Bonfiglio, A.; Teitsworth, T. S.; Sampaio, R. N.; Castellano, F. N.; Cahoon, J. F.; Donley, C. L.; Lockett, M. R. Immobilizing a Lehn-Type Catalyst with Nitrocyclocondensation Chemistries: CO₂ Reduction on Silicon Hybrid Photoelectrodes, ACS Appl. Mater. Interfaces, 2025, 17(23), 34741-34749. https://doi.org/10.1021/acsami.5c03638

Direct Evidence for Buffer-Enhanced Proton-Coupled Electron Transfer Generation of a High-Valent Metal-Oxo Complex
Kessinger, M.; Grandi, S.; Whittemore, T.; Danilov, E.; Castellano, F.; Caramori, S.; Meyer, G. Direct Evidence for Buffer-Enhanced Proton-Coupled Electron Transfer Generation of a High Valent Metal-oxo Complex, Inorg. Chem., 2025, 64(22), 10850-10861. https://doi.org/10.1021/acs.inorgchem.5c00650