
Absolute band-edge energies are over-emphasized in the design of photoelectrochemical materials
Kaufman, A. J.; Nielander, A. C.; Meyer, G. J.; Maldonado, S.; Ardo, S.; Boettcher, S. W. Absolute band-edge energies are over-emphasized in the design of photoelectrochemical materials, 2024, Nat. Catal., 7, 615-623. https://doi.org/10.1038/s41929-024-01161-0
Electrocatalytic methylation and amination reactions with CO₂ and NOₓʸ–
Rooney, C.L.; Wang, H. Electrocatalytic methylation and amination reactions with CO₂ and NOₓʸ⁻, 2024, Nat. Synth., 3, 792-793. https://doi.org/10.1038/s44160-024-00565-x

Reductive Dynamic and Static Excited State Quenching of a Homoleptic Ruthenium Complex Bearing Aldehyde Groups
Dickenson, J. C.; Grills, D. C.; Polyansky, D. E.; Meyer, G. J. Reductive Dynamic and Static Excited State Quenching of a Homoleptic Ruthenium Complex Bearing Aldehyde Groups, J. Phys. Chem. A. 2024, 128 (21), 4242-4251. https://doi.org/10.1021/acs.jpca.4c01090

Long-range electrostatic effects from intramolecular Lewis acid binding influence the redox properties of cobalt–porphyrin complexes
Alvarez-Hernandez, J. L.; Zhang, X.; Cui, K.; Deziel, A. P.; Hammes-Schiffer, S.; Hazari, N.; Piekut, N.; Zhong, M. Long-range electrostatic effects from intramolecular Lewis acid binding influence the redox properties of cobalt–porphyrin complexes. Chem. Sci., 2024, 15, 6800-6815. https://doi.org/10.1039/D3SC06177A

Photoelectrochemical Proton-Coupled Electron Transfer of TiO₂ Thin Films on Silicon
Nedzbala, H. S.; Westbroek, D.; Margavio, H. R. M.; Yang, H.; Noh, H.; Magpantay, S. V.; Donley, C. L.; Kumbhar, A. S.; Parsons, G. N.; Mayer, J. M. Photoelectrochemical Proton-Coupled Electron Transfer of TiO2 Thin Films on Silicon. J. Am. Chem. Soc., 2024, 146 (15), 10559-10572. https://doi.org/10.1021/jacs.4c00014

Methyl Termination of p-Type Silicon Enables Selective Photoelectrochemical CO₂ Reduction by a Molecular Ruthenium Catalyst
Bein, G. P.; Stewart, M. A.; Assad, E. A.; Tereniak, S. J.; Sampaio, R. N.; Miller, A. J. M.; Dempsey, J. L. Methyl Termination of p-Type Silicon Enables Selective Photoelectrochemical CO₂ Reduction by a Molecular Ruthenium Catalyst. ACS Energy Lett., 2024, 9 (4), 1777-1785. https://doi.org/10.1021/acsenergylett.4c00122

Coordination of Copper within a Crystalline Carbon Nitride and its Catalytic Reduction of CO₂
Pauly, M.; Deegbey, M.; Keller, L.; McGuigan, S.; Dianat, G.; Wong, J. C.; Murphy, C. G. F.; Shang, B.; Wang, H.; Cahoon, J. F.; Sampaio, R.; Kanai, Y.; Parsons, G.; Jakubikova, E.; Maggard, P. A. Coordination of Copper within a Crystalline Carbon Nitride and its Catalytic Reduction of CO₂, Dalton Trans., 2024, 53, 6779-6790. https://doi.org/10.1039/D4DT00359D

Reduction of CO to Methanol with Recyclable Organic Hydrides
Müller, A. V.; Ahmad, S.; Sirlin, J. T.; Ertem, M. Z.; Polyansky, D. E.; Grills, D. C.; Meyer, G. J.; Sampaio, R. N.; Concepcion, J. J. Reduction of CO to Methanol with Recyclable Organic Hydrides. J. Am. Chem. Soc., 2024, 146 (15), 10524-10536. https://doi.org/10.1021/jacs.3c14605

Photoelectrochemical CO₂ Reduction to CO Enabled by a Molecular Catalyst Attached to High-Surface-Area Porous Silicon
Jia, X.; Stewart-Jones, E.; Alvarez-Hernandez, J. L.; Bein, G. P.; Dempsey, J. L.; Donley, C. L.; Hazari, N.; Houck, M. N.; Li, M.; Mayer, J. M.; Nedzbala, H. S.; Powers, R. Photoelectrochemical CO2 Reduction to CO Enabled by a Molecular Catalyst Attached to High Surface Area Porous Silicon. J. Am. Chem. Soc., 2024, 146 (12), 7998-8004. https://doi.org/10.1021/jacs.3c10837

Real-Time Time-Dependent Density Functional Theory for Simulating Nonequilibrium Electron Dynamics
Xu, J.; Carney, T. E.; Zhou, R.; Shepard, C.; Kanai, Y. Real-Time Time-Dependent Density Functional Theory for Simulating Nonequilibrium Electron Dynamics. J. Am. Chem. Soc., 2024, 146 (8), 5011-5029. https://doi.org/10.1021/jacs.3c08226

Tailoring Interfaces for Enhanced Methanol Production from Photoelectrochemical CO₂ Reduction
Shang, B.; Zhao, F.; Suo, S.; Gao, Y.; Sheehan, C.; Jeon, S.; Li, J.; Rooney, C. L.; Leitner, O.; Xiao, L.; Fan, H.; Elimelech, M.; Wang, L.; Meyer, G. J.; Stach, E. A.; Mallouk, T. E.; Lian, T.; Wang, H. Tailoring Interfaces for Enhanced Methanol Production from Photoelectrochemical CO₂ Reduction J. Am. Chem. Soc., 2024, 146 (3), 2267-2274 https://doi.org/10.1021/jacs.3c13540

Direct Evidence for a Sequential Electron Transfer–Proton Transfer Mechanism in the PCET Reduction of a Metal Hydroxide Catalyst
Kessinger, M. C.; Xu, J.; Cui, K.; Loague, Q.; Soudackov, A. V.; Hammes-Schiffer, S.; Meyer, G. J. Direct Evidence for a Sequential Electron Transfer–Proton Transfer Mechanism in the PCET Reduction of a Metal Hydroxide Catalyst, J. Am. Chem. Soc., 2024, 146 (3) 1742-1747. https://doi.org/10.1021/jacs.3c10742

First-Principles Approach for Coupled Quantum Dynamics of Electrons and Protons in Heterogeneous Systems
Xu, J.; Zhou, R.; Blum, V.; Li, T. E.; Hammes-Schiffer, S.; Kanai, Y. First-Principles Approach for Coupled Quantum Dynamics of Electrons and Protons in Heterogeneous Systems. Phys. Rev. Lett. 2023, 131, 238002. https://doi.org/10.1103/PhysRevLett.131.238002
Selected as Editors’ Suggestion

Discovery of a Hybrid System for Photocatalytic CO₂ Reduction via Attachment of a Molecular Cobalt-Quaterpyridine Complex to a Crystalline Carbon Nitride
McGuigan, S.; Tereniak, S.; Donley, C.; Smith, A.; Jeon, S.; Zhao, F.; Sampaio, R.; Pauly, M.; Keller, L.; Collins, L.; Parsons, G.; Lian, T.; Stach, E.; Maggard, P. A. Discovery of a Hybrid System for Photocatalytic CO2 Reduction via Attachment of a Molecular Cobalt-Quaterpyridine Complex to a Crystalline Carbon Nitride. ACS Appl. Energy Materials. 2023, 6 (20), 10542-10553. https://doi.org/10.1021/acsaem.3c01670.

Well-Defined Iron Sites in Crystalline Carbon Nitride
Genoux, A.; Pauly, M.; Rooney, C. L.; Choi, C.; Shang, B.; McGuigan, S. Fataftah, M. S.; Kayser, Y.; Suhr, S. C. B.; DeBeer, S.; Wang, H.; Maggard, P. A.; Holland, P. L. Well-Defined Iron Sites in Crystalline Carbon Nitride. J. Am. Chem. Soc. 2023, 145 (38), 20739–20744. https://doi.org/10.1021/jacs.3c05417.

General Kinetic Model for pH Dependence of Proton-Coupled Electron Transfer: Application to an Electrochemical Water Oxidation System
Cui, K.; Soudackov, A. V.; Kessinger, M. C.; Xu, J.; Meyer, G. J.; Hammes-Schiffer, S. General Kinetic Model for pH Dependence of Proton-Coupled Electron Transfer: Application to an Electrochemical Water Oxidation System. J. Am. Chem. Soc. 2023, 145 (35), 19321–19332. https://doi.org/10.1021/jacs.3c05535

Synthesis and Surface Attachment of Molecular Re(I) Hydride Species with Silatrane Functionalized Bipyridyl Ligands
Jia, X.; Cui, K.; Alverez-Hernandez, J. L.; Donley, C. L.; Gang, A.; Hammes-Sciffer, S.; Hazari, N.; Jeon, S.; Mayer, J. M.; Nedzbala, H. S.; Shang, B.; Stach, E. A.; Stewart-Jones, E.; Wang, H.; Williams, A. Synthesis and Surface Attachment of Molecular Re(I) Hydride Species with Silatrane Functionalized Bipyridyl Ligands. Organometallics, 2023, 42 (16), 2238-2250. https://doi.org/10.1021/acs.organomet.3c00235

Ethanol Upgrading to n-Butanol Using Transition-Metal-Incorporated Poly(triazine)imide Frameworks
Cypher, S. M.; Pauly, M.; Castro, L. G.; Donley, C. L.; Maggard, P. A.; Goldberg, K. I. Ethanol Upgrading to n-Butanol Using Transition-Metal-Incorporated Poly(triazine)imide Frameworks. ACS Appl. Mater. Interfaces 2023, 15 (30) 36384–36393. https://doi.org/10.1021/acsami.3c07396

Direct Vibrational Stark Shift Probe of Quasi-Fermi Level Alignment in Metal Nanoparticle Catalyst-Based Metal–Insulator–Semiconductor Junction Photoelectrodes
Suo, S.; Sheehan, C.; Zhao, F.; Xiao, L.; Xu, Z.; Meng, J.; Mallouk, T. E.; Lian, T. Direct Vibrational Stark Shift Probe of Quasi-Fermi Level Alignment in Metal Nanoparticle Catalyst-Based Metal–Insulator–Semiconductor Junction Photoelectrodes. J. Am. Chem. Soc., 2023, 145 (26) 14260-14266. https://doi.org/10.1021/jacs.3c02333

Solar-Driven CO₂ Conversion via Optimized Photothermal Catalysis in a Lotus Pod Structure
Wang, H.; Fu, S.; Shang, B.; Jeon, S.; Zhong, Y.; Harmon, N. J.; Choi, C.; Stach, E.; Wang, H. Solar-Drive CO2 Conversion via Optimized Photothermal Catalysis in a Lotus Pod Structure. Angew. Chem. Int. Ed. 2023, 62 (30), e202305251. https://doi.org/10.1002/anie.202305251