
Lewis Acids and Electron-Withdrawing Ligands Accelerate CO Coordination to Dinuclear Cu(I) Compounds
Johnsen, W. D.; Deegbey, M.; Grills, D. C.; Polyansky, D. E.; Goldberg, K. I.; Jakubikova, E.; Mallouk, T. E. Lewis Acids and Electron-Withdrawing Ligands Accelerate CO Coordination to Dinuclear Cu(I) Compounds Inorg. Chem. 2023, 62 (23) 9146-9157. https://doi.org/10.1021/acs.inorgchem.3c01003

Synthesis of new chelating phosphines containing an aryl chloride group
Genoux, A.; DiPrimio, D. J.; Tereniak, S. J.; Holland, P. Synthesis of new chelating phosphines containing an aryl chloride group. Synthesis 2023, In press. https://doi.org/10.1055/a-2090-8316

Multi-Electron Transfer at H-Terminated p-Si Electrolyte Interfaces: Large Photovoltages under Inversion Conditions
Keller, N. D.; Vechi, P.; Grills, D. C.; Polyansky, D. E.; Bein, G. P.; Dempsey, J. L.; Cahoon, J. F.; Parsons, G. N.; Sampaio, R. N.; Meyer, G. J. Multi-Electron Transfer at H-Terminated p-Si Electrolyte Interfaces: Large Photovoltages under Inversion Conditions. J. Am. Chem. Soc. 2023, 145 (20), 11282-11292. https://doi.org/10.1021/jacs.3c01990

A Dicationic fac-Re(bpy)(CO)₃Cl for CO₂ Electroreduction at a Reduced Overpotential
Rotundo, L.; Ahmad, S.; Cappuccino, C.; Polyansky, D. E.; Ertem, M. Z.; Manbeck, G. F. A Dicationic fac-Re(bpy)(CO)₃Cl for CO₂ Electroreduction at a Reduced Overpotential. Inorg. Chem. 2023, 62 (20), 7877-7889. https://doi.org/10.1021/acs.inorgchem.3c00624

Synergizing Electron and Heat Flows in Photocatalyst for Direct Conversion of Captured CO₂
Choi, C.; Zhao, F.; Hart, J.. L; Gao, Y.; Menges, F.; Rooney, C. L.; Harmon, N. J.; Shang, B.; Xu, Z.; Suo, S.; Sam, Q.; Cha, J. J.; Lian, T.; Wang, H. Synergizing Electron and Heat Flows in Photocatalyst for Direct Conversion of Captured CO₂ Angew. Chem. Int. Ed. 2023, 62, e202302152. https://onlinelibrary.wiley.com/doi/10.1002/anie.202302152

Bonds over Electrons: Proton Coupled Electron Transfer at Solid–Solution Interfaces
Mayer, J. M. J. Am. Chem. Soc. 2023, 145 (13) 7050-7064. https://doi.org/10.1021/jacs.2c10212

In Situ Attenuated Total Reflectance Infrared Spectroelectrochemistry (ATR-IR-SEC) for the Characterization of Molecular Redox Processes on Surface-Proximal Doped Silicon ATR Crystal Working Electrode
Bottum, S. R; Teitsworth, T. S.; Han, Q.; Orr, A. D.; Jin-Sung Park, J.-S.; Jia, X.; Cappuccino, C.; Layne, B. H.; Hazari, N.; Concepcion, J. J.; Donley, C. L.; Polyansky, D. E.; Lockett, M. R.; Cahoon, J. F.; Grills, D. C. J. Phys. Chem. C 2023, 127 (14), 6690-6702. https://pubs.acs.org/doi/10.1021/acs.jpcc.2c08991

Characterizing Density and Spatial Distribution of Trap States in Ta₃N₅ Thin Films for Rational Defect Passivation
Rudd, P. N.; Tereniak, S. J.; Lopez, R. ACS Appl. Mater. Interfaces 2023, 15 (6), 7969–7977 https://doi.org/10.1021/acsami.2c19275

Synthesis and Surface Attachment of Molecular Re(I) Complexes Supported by Functionalized Bipyridyl Ligands
Jia, X.; Nedzbala, H. S.; Bottum, S. R.; Cahoon, J. F.; Concepcion, J. J.; Donley, C. L.; Gang, A.; Han, Q.; Hazari, N.; Kessinger, M. C.; Lockett, M. R.; Mayer, J. M.; Mercado, B. Q.; Meyer, G. J.; Pearce, A. J.; Rooney, C. L.; Sampaio, R. N.; Shang, B.; Wang, H. Inorg. Chem. 2023, 62 (5) 2359-2375 https://doi.org/10.1021/acs.inorgchem.2c04137

Quantum Confinement and Decoherence Effect on Excited Electron Transfer at the Semiconductor–Molecule Interface: A First-Principles Dynamics Study
Wong, J. C.; Kanai, Y. J. Phys. Chem. C 2023, 127 (1), 532–541. https://doi.org/10.1021/acs.jpcc.2c05657

Surface Immobilization of a Re(I) Tricarbonyl Phenanthroline Complex to Si(111) through Sonochemical Hydrosilylation
Huffman, B. L.; Bein, G. P.; Atallah, H.; Donley, C. L.; Alameh, R. T.; Wheeler, J. P.; Durand, N.; Harvey, A. K.; Kessinger, M. C.; Chen, C. Y.; Fakhraai, Z.; Atkin, J. M.; Castellano, F. N.; Dempsey, J. L. Surface Immobilization of a Re(I) Tricarbonyl Phenanthroline Complex to Si(111) through Sonochemical Hydrosilylation. ACS Appl. Mater. Interfaces. 2023, 15, 984−996. https://doi.org/10.1021/acsami.2c17078

Efficient electrocatalytic valorization of chlorinated organic water pollutant to ethylene
Choi, C., Wang, X., Kwon, S. Hart, J. L.; Rooney, C. L.; Harmon, N. J.; Sam, Q. P.; Cha, J. J.; Goddard III, W. A.; Elimelech, M.; Wang, H. Nat. Nanotechnol. 2022 18, 160–167 https://doi.org/10.1038/s41565-022-01277-z

Aqueous Photoelectrochemical CO₂ Reduction to CO and Methanol over a Silicon Photocathode Functionalized with a Cobalt Phthalocyanine Molecular Catalyst
Shang, B.; Rooney, C. L.; Gallagher, D. J.; Wang, B.; Krayev, A.; Shema, H.; Leitner, O.; Harmon, N. J.; Xiao, L.; Sheehan, C.; Bottum,. S. R.; Gross, E.; Cahoon, J. F.; Mallouk, T. E.; Wang, H. Angew. Chem. Int. Ed. 2023, 62, e202215213. https://doi.org/10.1002/anie.202215213

Reorganization Energies for Interfacial Proton-Coupled Electron Transfer to a Water Oxidation Catalyst
Kessinger, M.; Soudackov, A. V.; Schneider, J.; Bangle, R. E.; Hammes-Schiffer, S.; Meyer, G. J. J. Am. Chem. Soc. 2022, 144 (44), 20514–20524. https://doi.org/10.1021/jacs.2c09672

Accessing and Photo-Accelerating Low-Overpotential Pathways for CO₂ Reduction: A Bis-Carbene Ruthenium Terpyridine Catalyst
Assaf, E. A.; Gonell, S.; Chen, C-H.; Miller, A. J. M. ACS Catal. 2022, 12 (20) 12596–12606. https://doi.org/10.1021/acscatal.2c03651

An atomistic picture is worth a thousand words: New details on supported molecular catalysts
Stewart-Jones, E.; Kurtz, D. A. Matter 2022, 5 (8), 2553-2555. https://doi.org/10.1016/j.matt.2022.07.005
Discovery and Development of Semiconductors for Photoelectrochemical Energy Conversion
Maggard, P. A. Eds. Springer Nature: 2023; In Press, Aug 2022. ISBN-13: 978-3030637125; ISBN-10: 3030637123

Restructuring and integrity of molecular catalysts in electrochemical CO₂ reduction
Rooney, C.L.; Wu, Y.; Gallagher, D.J.; Wang, H. Nat. Sci. 2022, e20210628, https://doi.org/10.1002/ntls.20210628

Accelerating discovery of photoactive materials
Gregoire, J. M.; Ertem, M. Z. J. Phys. D: Appl. Phys. 2022, 55, 323003. https://doi.org/10.1088/1361-6463/ac6f97

Nuclear–electronic orbital approach to quantization of protons in periodic electronic structure calculations
Xu, J.; Zhou, R.; Tao, Z.; Malbon, C.; Blum, V.; Hammes-Schiffer, S.; Kanai, Y. J. Chem. Phys., 2022, 156, 224111. https://doi.org/10.1063/5.0088427