
Photophysical and Time-resolved Infrared Properties of Long-Lived Rhenium(I) 4,5-Diazafluorene Tricarbonyl Chromophores
Alameh, R. T.; Rosko, M. C.; Danilov, E. O.; Durand, N.; Castellano, F. N. Photophysical and Time-resolved Infrared Properties of Long-Lived Rhenium(I) 4,5-Diazafluorene Tricarbonyl Chromophores, 2025, ChemPhysChem, e202500008. https://doi.org/10.1002/cphc.202500008

Oxidation Temperature-Dependent Electrochemical Doping of WO₃ Deposited via Atomic Layer Deposition
Bredar, A. R. C.; Margavio, H. R. M.; Donley, C. L.; Spinner, N.; Amin, N.; Parsons, G. N.; Dempsey, J. L. Oxidation Temperature-Dependent Electrochemical Doping of WO3 Deposited via Atomic Layer Deposition, J. Phys. Chem. C., 2024, In press. https://doi.org/10.1021/acs.jpcc.4c06105

Statistical analysis of HAADF-STEM images to determine the surface coverage and distribution of immobilized molecular complexes
Jeon, S.; Nedzbala, H.; Huffman, B.; Pearce, A.; Donley, C.; Jia, X.; Bein, G.; Choi, J. H.; Durand, N.; Atallah, H.; Castellano, F.; Dempsey, J. L.; Mayer, J.; Hazari, N. Statistical Analysis of HAADF-STEM Images to Determine the Surface Coverage and Distribution of Immobilized Molecular Complexes. Matter, 2024, In press. https://doi.org/10.1016/j.matt.2024.11.013

Enhanced methanol production from photothermal CO₂ reduction via multilevel interface design
Wang, H.; Shang, B.; Choi, C.; Jeon, S.; Gao, Y.; Wang, T.; Harmon, N. J.; Liu, M.; Stach, E. A.; Wang, H. Enhanced methanol production from photothermal CO2 reduction via multilevel interface design, Nano. Res., 2024, Just accepted manuscript. https://doi.org/10.26599/NR.2025.94907160

Room-Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO₂
Fernández, S.; Assaf, E.; Ahmad, S.; Travis, B.; Curley, J.; Hazari, N.; Ertem, M. Z.; Miller, A. J. M. Room Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical-Thermal Organometallic Cascade for Methanol Synthesis from CO2. Angew. Chem. Int. Ed. 2024, In press. https://doi.org/10.1002/anie.202416061

Lagrangian formulation of nuclear–electronic orbital Ehrenfest dynamics with real-time TDDFT for extended periodic systems
Xu, J.; Zhou, R.; Li. T. E.; Hammes-Schiffer, S.; Kanai, Y. Lagrangian Formulation of Nuclear-Electronic Orbital Ehrenfest Dynamics with Real-time TDDFT for Extended Periodic Systems. J. Chem. Phys., 2024, 161, 194109. https://doi.org/10.1063/5.0230570

Catalytic Reduction of Carbon Monoxide to Liquid Fuels with Recyclable Hydride Donors
Concepcion, J. J.; Sampaio, R. N.; Meyer, G. J. “Catalytic Reduction of Carbon Monoxide to Liquid Fuels with Recyclable Hydride Donors” ACS Catal., 2024, (14), 16562-16569. https://doi.org/10.1021/acscatal.4c05083

Fast Catalysis at Low Overpotential: Designing Efficient Dicationic Re(bpy²⁺)(CO)₃I Electrocatalysts for CO₂ Reduction
Rotundo, L.; Ahmad, S.; Cappuccino, C.; Pearce, A. J.; Nedzbala, H.; Bottum, S. R.; Mayer, J. M.; Cahoon, J. F.; Grills, D. C.; Ertem, M. Z.; Manbeck, G. F. Fast Catalysis at Low Overpotential: Designing Efficient Dicationic Re(bpy²⁺)(CO)₃I Electrocatalysts for CO₂ Reduction, J. Am. Chem. Soc., 2024, 146 (36), 24742-24747. https://doi.org/10.1021/jacs.4c08084

Trust Not Verify? The Critical Need for Data Curation Standards in Materials Informatics
Hart, M.; Idanwekhai, K.; Alves, V. M.; Miller, A. J. M.; Dempsey, J. L.; Cahoon, J. F.; Chen, C-H.; Winkler, D. A.; Muratov, E. N.; Tropsha, A. Trust Not Verify? The Critical Need for Data Curation Standards in Materials Informatics, Chem. Mater., 2024, 36 (19), 9046-9055. https://doi.org/10.1021/acs.chemmater.4c00981

Diazonium-Functionalized Silicon Hybrid Photoelectrodes: Film Thickness and Composition Effects on Photoelectrochemical Behavior
Teitsworth, T. S.; Fang, H.; Harvey, A. K.; Orr, A. D.; Donley, C. L.; Fakhraai, Z.; Atkin, J. M.; Lockett, M. R. Diazonium-Functionalized Silicon Hybrid Photoelectrodes: Film Thickness and Composition Effects on Photoelectrochemical Behavior, Langmuir, 2024, 40 (34), 18133-18141. https://doi.org/10.1021/acs.langmuir.4c01787

Covalent Functionalization of Silicon with Plasma-Grown “Fuzzy” Graphene: Robust Aqueous Photoelectrodes for CO₂ Reduction by Molecular Catalysts
Oyetade, O.; Wang, Y.; He, S.; Margavio, H.; Bottum, S.; Rooney, C.; Wang, H.; Donley, C.; Parsons, G.; Cohen-Karni, T.; Cahoon, J. Covalent Functionalization of Silicon with Plasma-grown ‘Fuzzy’ Graphene: Robust Aqueous Photoelectrodes for CO2 Reduction by Molecular Catalysts, ACS Appl. Mater. Interfaces, 2024, 16 (29), 37885–37895. https://doi.org/10.1021/acsami.4c04691

Formal Oxidation States and Coordination Environments in the Catalytic Reduction of CO to Methanol
Barba-Nieto, I.; Müller, A. V.; Titus, C. J.; Wierzbicki, D.; Jaye, C.; Ertem, M. Z.; Meyer, G. J.; Concepcion, J. J.; Rodriguez, J. Formal Oxidation States and Coordination Environments in the Catalytic Reduction of CO to Methanol, ACS Energy Lett., 2024, 9, 3815-3817. https://pubs.acs.org/doi/10.1021/acsenergylett.4c01269

Proton-Coupled Electron Transfer Mechanisms for CO₂ Reduction to Methanol Catalyzed by Surface-Immobilized Cobalt Phthalocyanine
Hutchison, P.; Smith, L. E.; Rooney, C. L.; Wang, H.; Hammes-Schiffer, S. Proton-Coupled Electron Transfer Mechanisms for CO2 Reduction to Methanol Catalyzed by Surface-Immobilized Cobalt Phthalocyanine, J. Am. Chem. Soc., 2024, 146 (29) 20230-20240. https://doi.org/10.1021/jacs.4c05444
Open Circuit Potential Method for Thermodynamic Hydricity Measurements of Metal Hydrides
Smith, A. M.; Miller, A. J. M. Open Circuit Potential Method for Thermodynamic Hydricity Measurements of Metal Hydrides, 2024, In Press. https://doi.org/10.1021/acs.organomet.4c00144

Absolute band-edge energies are over-emphasized in the design of photoelectrochemical materials
Kaufman, A. J.; Nielander, A. C.; Meyer, G. J.; Maldonado, S.; Ardo, S.; Boettcher, S. W. Absolute band-edge energies are over-emphasized in the design of photoelectrochemical materials, 2024, Nat. Catal., 7, 615-623. https://doi.org/10.1038/s41929-024-01161-0
Electrocatalytic methylation and amination reactions with CO₂ and NOₓʸ–
Rooney, C.L.; Wang, H. Electrocatalytic methylation and amination reactions with CO₂ and NOₓʸ⁻, 2024, Nat. Synth., 3, 792-793. https://doi.org/10.1038/s44160-024-00565-x

Reductive Dynamic and Static Excited State Quenching of a Homoleptic Ruthenium Complex Bearing Aldehyde Groups
Dickenson, J. C.; Grills, D. C.; Polyansky, D. E.; Meyer, G. J. Reductive Dynamic and Static Excited State Quenching of a Homoleptic Ruthenium Complex Bearing Aldehyde Groups, J. Phys. Chem. A. 2024, In Press. https://doi.org/10.1021/acs.jpca.4c01090

Long-range electrostatic effects from intramolecular Lewis acid binding influence the redox properties of cobalt–porphyrin complexes
Alvarez-Hernandez, J. L.; Zhang, X.; Cui, K.; Deziel, A. P.; Hammes-Schiffer, S.; Hazari, N.; Piekut, N.; Zhong, M. Long-range electrostatic effects from intramolecular Lewis acid binding influence the redox properties of cobalt–porphyrin complexes. Chem. Sci., 2024, 15, 6800-6815. https://doi.org/10.1039/D3SC06177A

Photoelectrochemical Proton-Coupled Electron Transfer of TiO₂ Thin Films on Silicon
Nedzbala, H. S.; Westbroek, D.; Margavio, H. R. M.; Yang, H.; Noh, H.; Magpantay, S. V.; Donley, C. L.; Kumbhar, A. S.; Parsons, G. N.; Mayer, J. M. Photoelectrochemical Proton-Coupled Electron Transfer of TiO2 Thin Films on Silicon. J. Am. Chem. Soc., 2024, 146 (15), 10559-10572. https://doi.org/10.1021/jacs.4c00014

Methyl Termination of p-Type Silicon Enables Selective Photoelectrochemical CO₂ Reduction by a Molecular Ruthenium Catalyst
Bein, G. P.; Stewart, M. A.; Assad, E. A.; Tereniak, S. J.; Sampaio, R. N.; Miller, A. J. M.; Dempsey, J. L. Methyl Termination of p-Type Silicon Enables Selective Photoelectrochemical CO₂ Reduction by a Molecular Ruthenium Catalyst. ACS Energy Lett., 2024, 9 (4), 1777-1785. https://doi.org/10.1021/acsenergylett.4c00122