Electron Inversion and Tunneling at Silicon Thermal Oxide Interfaces for Solar-Driven Molecular Catalysis to Syngas
CHASE Hub CHASE Hub

Electron Inversion and Tunneling at Silicon Thermal Oxide Interfaces for Solar-Driven Molecular Catalysis to Syngas

He, S.; Bottum, S. R.; Dickenson, J. C.; Margavio, H. R. M.; Keller, N. D.; Oyetade, O. A.; Gentile, R. J.; Teitsworth, T. S.; Shin, S. J.; Dempsey, J. L.; Miller, A. J. M.; Sampaio, R. N.; Tereniak, S. J.; Donley, C. L.; Lockett, M. R.; Parsons, G. N.; Meyer, G. J.; Cahoon, J. F. Electron Inversion and Tunneling at Silicon Thermal Oxide Interfaces for Solar-Driven Molecular Catalysis to Syngas, J. Am. Chem. Soc., 2025, In press. https://doi.org/10.1021/jacs.4c17251

Read More
Photoelectrocatalytic reduction of CO₂ to formate using immobilized molecular manganese catalysts on oxidized porous silicon
CHASE Hub CHASE Hub

Photoelectrocatalytic reduction of CO₂ to formate using immobilized molecular manganese catalysts on oxidized porous silicon

Hong, Y. H.; Jia, X.; Stewart-Jones, E.; Kumar, A.; Wedal, J. C.; Alvarez-Hernandez, J. L.; Donley, C. L.; Gang, A.; Gibson, N. J.; Hazari, N. Houck, M.; Jeon, S.; Kim, J.; Koh, H.; Mayer, J. M.; Mercado, B. Q.; Nedzbala, H. S.; Piekut, N.; Quist, C.; Stach, E.; Zhang, Y. Photoelectrocatalytic reduction of CO₂ to formate using immobilized molecular manganese catalysts on oxidized porous silicon, Chem, 2025, 102462. https://doi.org/10.1016/j.chempr.2025.102462

Read More
Electron Transfer Energetics in Photoelectrochemical CO₂ Reduction at Viologen Redox Polymer-Modified p-Si Electrodes
CHASE Hub CHASE Hub

Electron Transfer Energetics in Photoelectrochemical CO₂ Reduction at Viologen Redox Polymer-Modified p-Si Electrodes

Sheehan, C. J.; Suo, S.; Jeon, S.; Zheng, Y.; Meng, J.; Zhao, F.; Yang, Z.; Xiao, L.; Venkatesan, S.; Metlay, A. M.; Donley, C. L.; Stach, E. A.; Lian, T.; Mallouk, T. E. Electron Transfer Energetics in Photoelectrochemical CO2 Reduction at Viologen Redox Polymer-Modified p-Si Electrodes, J. Am. Chem. Soc.2025, In press. https://doi.org/10.1021/jacs.4c17762

Read More
Mild-Annealed Molecular Layer Deposition (MLD) Tincone Thin Film as Photoelectrochemically Stable and Efficient Electron Transport Layer for Si Photocathodes
CHASE Hub CHASE Hub

Mild-Annealed Molecular Layer Deposition (MLD) Tincone Thin Film as Photoelectrochemically Stable and Efficient Electron Transport Layer for Si Photocathodes

Yang, H.; Oldham, C. J.; Donley, C. L.; Sampaio, R. N.; Dickenson, J. C.; Vecchi, P.; Reddy, K. A. J.; Maggard, P. A.; Meyer, G. J.; Parsons, G. N. Mild-Annealed Molecular Layer Deposition (MLD) Tincone Thin Film as Photoelectrochemically Stable and Efficient Electron Transport Layer for Si Photocathodes, ACS Appl. Energy Mater., 2025, 8 (5), 2982–2992. https://doi.org/10.1021/acsaem.4c02997

Read More
Statistical analysis of HAADF-STEM images to determine the surface coverage and distribution of immobilized molecular complexes
CHASE Hub CHASE Hub

Statistical analysis of HAADF-STEM images to determine the surface coverage and distribution of immobilized molecular complexes

Jeon, S.; Nedzbala, H.; Huffman, B.; Pearce, A.; Donley, C.; Jia, X.; Bein, G.; Choi, J. H.; Durand, N.; Atallah, H.; Castellano, F.; Dempsey, J. L.; Mayer, J.; Hazari, N. Statistical Analysis of HAADF-STEM Images to Determine the Surface Coverage and Distribution of Immobilized Molecular Complexes. Matter, 2025, 8 (2), 101919. https://doi.org/10.1016/j.matt.2024.11.013

Read More
Room-Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO₂
CHASE Hub CHASE Hub

Room-Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO₂

Fernández, S.; Assaf, E.; Ahmad, S.; Travis, B.; Curley, J.; Hazari, N.; Ertem, M. Z.; Miller, A. J. M. Room Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical-Thermal Organometallic Cascade for Methanol Synthesis from CO2. Angew. Chem. Int. Ed. 2024, 64 (4), e202416061.. https://doi.org/10.1002/anie.202416061

Read More
Fast Catalysis at Low Overpotential: Designing Efficient Dicationic Re(bpy²⁺)(CO)₃I Electrocatalysts for CO₂ Reduction
CHASE Hub CHASE Hub

Fast Catalysis at Low Overpotential: Designing Efficient Dicationic Re(bpy²⁺)(CO)₃I Electrocatalysts for CO₂ Reduction

Rotundo, L.; Ahmad, S.; Cappuccino, C.; Pearce, A. J.; Nedzbala, H.; Bottum, S. R.; Mayer, J. M.; Cahoon, J. F.; Grills, D. C.; Ertem, M. Z.; Manbeck, G. F. Fast Catalysis at Low Overpotential: Designing Efficient Dicationic Re(bpy²⁺)(CO)₃I Electrocatalysts for CO₂ Reduction, J. Am. Chem. Soc., 2024, 146 (36), 24742-24747. https://doi.org/10.1021/jacs.4c08084

Read More
Diazonium-Functionalized Silicon Hybrid Photoelectrodes: Film Thickness and Composition Effects on Photoelectrochemical Behavior
CHASE Hub CHASE Hub

Diazonium-Functionalized Silicon Hybrid Photoelectrodes: Film Thickness and Composition Effects on Photoelectrochemical Behavior

Teitsworth, T. S.; Fang, H.; Harvey, A. K.; Orr, A. D.; Donley, C. L.; Fakhraai, Z.; Atkin, J. M.; Lockett, M. R. Diazonium-Functionalized Silicon Hybrid Photoelectrodes: Film Thickness and Composition Effects on Photoelectrochemical Behavior, Langmuir, 2024, 40 (34), 18133-18141. https://doi.org/10.1021/acs.langmuir.4c01787

Read More
Covalent Functionalization of Silicon with Plasma-Grown “Fuzzy” Graphene: Robust Aqueous Photoelectrodes for CO₂ Reduction by Molecular Catalysts
CHASE Hub CHASE Hub

Covalent Functionalization of Silicon with Plasma-Grown “Fuzzy” Graphene: Robust Aqueous Photoelectrodes for CO₂ Reduction by Molecular Catalysts

Oyetade, O.; Wang, Y.; He, S.; Margavio, H.; Bottum, S.; Rooney, C.; Wang, H.; Donley, C.; Parsons, G.; Cohen-Karni, T.; Cahoon, J. Covalent Functionalization of Silicon with Plasma-grown ‘Fuzzy’ Graphene: Robust Aqueous Photoelectrodes for CO2 Reduction by Molecular Catalysts, ACS Appl. Mater. Interfaces2024, 16 (29), 37885–37895. https://doi.org/10.1021/acsami.4c04691

Read More
Formal Oxidation States and Coordination Environments in the Catalytic Reduction of CO to Methanol
CHASE Hub CHASE Hub

Formal Oxidation States and Coordination Environments in the Catalytic Reduction of CO to Methanol

Barba-Nieto, I.; Müller, A. V.; Titus, C. J.; Wierzbicki, D.; Jaye, C.; Ertem, M. Z.; Meyer, G. J.; Concepcion, J. J.; Rodriguez, J. Formal Oxidation States and Coordination Environments in the Catalytic Reduction of CO to Methanol, ACS Energy Lett., 2024, 9, 3815-3817. https://pubs.acs.org/doi/10.1021/acsenergylett.4c01269

Read More