
In Situ Characterization of Surface Recombination in p-Si/SiOₓ Based Photoelectrochemical Cells
Vecchi, P.; Dickenson, J. C.; Gentile, R. J.; Powers, R. E.; Dempsey, J. L.; Grills, D. C.; Cahoon, J. F.; Sampaio, R. N.; Meyer, G. J In-situ Characterization of Surface Recombination in p-Si/SiOx Based Photoelectrochemical Cells. ACS Electrochemistry 2025, In Press. https://doi.org/10.1021/acselectrochem.5c00098

A Rhenium Bis-tetramethylphenanthroline Catalyst for CO₂ Reduction to Formate
Alameh, R.; Arteta, S.; Fernández, S.; Barakat, M.; Asempa, E.; Atallah, H.; Durand, N.; Gillis, C.; Assaf, E.; Jakubikova, E.; Miller, A.; Castellano, F. A Rhenium Bis-Tetramethylphenanthroline Catalyst for CO2 Reduction to Formate, Energy & Fuels, 2025, 39(26), 12667-12675. https://doi.org/10.1021/acs.energyfuels.5c01212
Illuminating the mechanistic impacts of an Fe-quaterpyridine functionalized crystalline poly(triazine imide) semiconductor for photocatalytic CO₂ reduction
McGuigan, S.; Tereniak, S.; Smith, A.; Jana, S.; Donley, C. L.; Collins, L.; Ghorai, N.; Xu, Y.; Adu Fosu, E.; Suhr, S.; Margavio, H. R. M.; Yang, H.; Parsons, G.; Holland, P.; Jakubikova, E.; Lian, T.; Maggard, P. A. Illuminating the mechanistic impacts of an Fe-quaterpyridine functionalized crystalline poly(triazine imide) semiconductor for photocatalytic CO2 reduction, Inorg. Chem. Front., 2025, Advance Article. https://doi.org/10.1039/D5QI00859J

Photochemical Ligand-Based CO₂ Reduction Mediated by Ruthenium Formyl Species
Desai, S. P.; Müller, A. V.; Cappuccino, C.; Polyansky, D. E.; Grills, D. C.; Ertem, M. Z.; Concepcion, J. J. Photochemical Ligand-Based CO2 Reduction Mediated by Ruthenium Formyl Species, J. Am. Chem. Soc., 2025, 147(26), 22725–22733. https://doi.org/10.1021/jacs.5c04611

Fullerene Promotes CO₂ Reduction to Methanol by a Cobalt(II) Phthalocyanine Electrocatalyst
Fosu, E. A.; Deegbey, M.; Jakubikova, E. Fullerene Promotes CO2 Reduction to Methanol by a Cobalt(II) Phthalocyanine Electrocatalyst, Inorg. Chem., 2025, 64(24), 12390-12401. https://doi.org/10.1021/acs.inorgchem.5c02178

Automation of the Marangoni Effect for Making Well-Ordered and Transferable Colloidal Monolayers at the Air–Water Interface
Sheehan, C. J.; Gao, T.; Xiao, L.; Venkatesan, S.; Mallouk, T. E. Automation of the Marangoni Effect for Making Well-Ordered and Transferable Colloidal Monolayers at the Air-Water Interface. 2025, Langmuir, 41(23), 14880-14888. https://doi.org/10.1021/acs.langmuir.5c01014

Immobilizing a Lehn-Type Catalyst with Nitrocyclocondensation Chemistries: CO₂ Reduction on Silicon Hybrid Photoelectrodes
Orr, A. D.; Zhu, Z.; Durand, N.; Bonfiglio, A.; Teitsworth, T. S.; Sampaio, R. N.; Castellano, F. N.; Cahoon, J. F.; Donley, C. L.; Lockett, M. R. Immobilizing a Lehn-Type Catalyst with Nitrocyclocondensation Chemistries: CO₂ Reduction on Silicon Hybrid Photoelectrodes, ACS Appl. Mater. Interfaces, 2025, 17(23), 34741-34749. https://doi.org/10.1021/acsami.5c03638

Direct Evidence for Buffer-Enhanced Proton-Coupled Electron Transfer Generation of a High-Valent Metal-Oxo Complex
Kessinger, M.; Grandi, S.; Whittemore, T.; Danilov, E.; Castellano, F.; Caramori, S.; Meyer, G. Direct Evidence for Buffer-Enhanced Proton-Coupled Electron Transfer Generation of a High Valent Metal-oxo Complex, Inorg. Chem., 2025, 64(22), 10850-10861. https://doi.org/10.1021/acs.inorgchem.5c00650
![Efficient Self-Sensitized Photochemical CO₂ Reduction Using [Re(bpy²⁺)(CO)₃(I)]²⁺ and [Re(bpy²⁺)(CO)₃(CH₃CN)]³⁺ Photocatalysts with Pendent Ammonium Cations](https://images.squarespace-cdn.com/content/v1/62a2221d5a239f16b5de994f/1752499938686-ON4N4SHSSJCBBKELDEHZ/images_large_ja5c02523_0009.jpeg)
Efficient Self-Sensitized Photochemical CO₂ Reduction Using [Re(bpy²⁺)(CO)₃(I)]²⁺ and [Re(bpy²⁺)(CO)₃(CH₃CN)]³⁺ Photocatalysts with Pendent Ammonium Cations
Wang, Z.; Rotundo, L.; Ertem, M. Z.; Polyansky, D.; Manbeck, G. F. Efficient Self-Sensitized Photochemical CO₂ Reduction Using [Re(bpy²⁺)(CO)₃(I)]²⁺ and [Re(bpy²⁺)(CO)₃(CH₃CN)]³⁺ Photocatalysts with Pendent Ammonium Cations, J. Am. Chem. Soc. 2025, 147(22), 18796–18813. https://doi.org/10.1021/jacs.5c02523

Energy conservation in real-time nuclear–electronic orbital Ehrenfest dynamics
Li, T. E.; Li, X.; Hammes-Schiffer, S. "Energy conservation in real-time nuclear–electronic orbital Ehrenfest dynamics”, J. Chem. Phys., 2025, 162, 144106, https://doi.org/10.1063/5.0255984

Spatially Patterned Architectures to Modulate CO₂ Reduction Cascade Catalysis Kinetics
Garcia-Batlle, M.; Fernandez, P.; Sheehan, C.; He, S.; Mallouk, T.; Parsons, G.; Cahoon. J.; Lopez, R. Spatially Patterned Architectures to Modulate CO2 Reduction Cascade Catalysis Kinetics. ACS Catalysis, 2025, 15(7), 5894-5905. https://doi.org/10.1021/acscatal.5c01176

Electron Inversion and Tunneling at Silicon Thermal Oxide Interfaces for Solar-Driven Molecular Catalysis to Syngas
He, S.; Bottum, S. R.; Dickenson, J. C.; Margavio, H. R. M.; Keller, N. D.; Oyetade, O. A.; Gentile, R. J.; Teitsworth, T. S.; Shin, S. J.; Dempsey, J. L.; Miller, A. J. M.; Sampaio, R. N.; Tereniak, S. J.; Donley, C. L.; Lockett, M. R.; Parsons, G. N.; Meyer, G. J.; Cahoon, J. F. Electron Inversion and Tunneling at Silicon Thermal Oxide Interfaces for Solar-Driven Molecular Catalysis to Syngas, J. Am. Chem. Soc., 2025, 147(13), 11145-11151. https://doi.org/10.1021/jacs.4c17251

Electrocatalytic Reductive Amination of Aldehydes and Ketones with Aqueous Nitrite
Rooney, C. L.; Sun, Q.; Shang, B.; Wang, H. Electrocatalytic Reductive Amination of Aldehydes and Ketones with Aqueous Nitrite, J. Am. Chem. Soc., 2025, 147(11), 9378-9385. https://doi.org/10.1021/jacs.4c16344

Photoelectrocatalytic reduction of CO₂ to formate using immobilized molecular manganese catalysts on oxidized porous silicon
Hong, Y. H.; Jia, X.; Stewart-Jones, E.; Kumar, A.; Wedal, J. C.; Alvarez-Hernandez, J. L.; Donley, C. L.; Gang, A.; Gibson, N. J.; Hazari, N. Houck, M.; Jeon, S.; Kim, J.; Koh, H.; Mayer, J. M.; Mercado, B. Q.; Nedzbala, H. S.; Piekut, N.; Quist, C.; Stach, E.; Zhang, Y. Photoelectrocatalytic reduction of CO₂ to formate using immobilized molecular manganese catalysts on oxidized porous silicon, Chem, 2025, 102462. https://doi.org/10.1016/j.chempr.2025.102462

Electron Transfer Energetics in Photoelectrochemical CO₂ Reduction at Viologen Redox Polymer-Modified p-Si Electrodes
Sheehan, C. J.; Suo, S.; Jeon, S.; Zheng, Y.; Meng, J.; Zhao, F.; Yang, Z.; Xiao, L.; Venkatesan, S.; Metlay, A. M.; Donley, C. L.; Stach, E. A.; Lian, T.; Mallouk, T. E. Electron Transfer Energetics in Photoelectrochemical CO2 Reduction at Viologen Redox Polymer-Modified p-Si Electrodes, J. Am. Chem. Soc., 2025, 147(11), 9629-9639. https://doi.org/10.1021/jacs.4c17762

Mild-Annealed Molecular Layer Deposition (MLD) Tincone Thin Film as Photoelectrochemically Stable and Efficient Electron Transport Layer for Si Photocathodes
Yang, H.; Oldham, C. J.; Donley, C. L.; Sampaio, R. N.; Dickenson, J. C.; Vecchi, P.; Reddy, K. A. J.; Maggard, P. A.; Meyer, G. J.; Parsons, G. N. Mild-Annealed Molecular Layer Deposition (MLD) Tincone Thin Film as Photoelectrochemically Stable and Efficient Electron Transport Layer for Si Photocathodes, ACS Appl. Energy Mater., 2025, 8 (5), 2982–2992. https://doi.org/10.1021/acsaem.4c02997

Photophysical and Time-resolved Infrared Properties of Long-Lived Rhenium(I) 4,5-Diazafluorene Tricarbonyl Chromophores
Alameh, R. T.; Rosko, M. C.; Danilov, E. O.; Durand, N.; Castellano, F. N. Photophysical and Time-resolved Infrared Properties of Long-Lived Rhenium(I) 4,5-Diazafluorene Tricarbonyl Chromophores, ChemPhysChem, 2025, e202500008. https://doi.org/10.1002/cphc.202500008

Oxidation Temperature-Dependent Electrochemical Doping of WO₃ Deposited via Atomic Layer Deposition
Bredar, A. R. C.; Margavio, H. R. M.; Donley, C. L.; Spinner, N.; Amin, N.; Parsons, G. N.; Dempsey, J. L. Oxidation Temperature-Dependent Electrochemical Doping of WO3 Deposited via Atomic Layer Deposition, J. Phys. Chem. C., 2024, 128 (50), 21539-21550. https://doi.org/10.1021/acs.jpcc.4c06105

Statistical analysis of HAADF-STEM images to determine the surface coverage and distribution of immobilized molecular complexes
Jeon, S.; Nedzbala, H.; Huffman, B.; Pearce, A.; Donley, C.; Jia, X.; Bein, G.; Choi, J. H.; Durand, N.; Atallah, H.; Castellano, F.; Dempsey, J. L.; Mayer, J.; Hazari, N. Statistical Analysis of HAADF-STEM Images to Determine the Surface Coverage and Distribution of Immobilized Molecular Complexes. Matter, 2025, 8 (2), 101919. https://doi.org/10.1016/j.matt.2024.11.013

Enhanced methanol production from photothermal CO₂ reduction via multilevel interface design
Wang, H.; Shang, B.; Choi, C.; Jeon, S.; Gao, Y.; Wang, T.; Harmon, N. J.; Liu, M.; Stach, E. A.; Wang, H. Enhanced methanol production from photothermal CO2 reduction via multilevel interface design, Nano. Res., 2025, 18 (2), 94907160. https://doi.org/10.26599/NR.2025.94907160