![First-Principles Approach for Coupled Quantum Dynamics of Electrons and Protons in Heterogeneous Systems](https://images.squarespace-cdn.com/content/v1/62a2221d5a239f16b5de994f/1702502066219-AF9WGB7MUK6XHYMZSBTT/Pseudo-TOC+Hammes-Schiffer+and+Kanai.png)
First-Principles Approach for Coupled Quantum Dynamics of Electrons and Protons in Heterogeneous Systems
Xu, J.; Zhou, R.; Blum, V.; Li, T. E.; Hammes-Schiffer, S.; Kanai, Y. First-Principles Approach for Coupled Quantum Dynamics of Electrons and Protons in Heterogeneous Systems. Phys. Rev. Lett. 2023, 131, 238002. https://doi.org/10.1103/PhysRevLett.131.238002
Selected as Editors’ Suggestion
![Discovery of a Hybrid System for Photocatalytic CO₂ Reduction via Attachment of a Molecular Cobalt-Quaterpyridine Complex to a Crystalline Carbon Nitride](https://images.squarespace-cdn.com/content/v1/62a2221d5a239f16b5de994f/1698678606245-5OH7FYR8M6NI854NDHF5/Maggard+TOC.jpeg)
Discovery of a Hybrid System for Photocatalytic CO₂ Reduction via Attachment of a Molecular Cobalt-Quaterpyridine Complex to a Crystalline Carbon Nitride
McGuigan, S.; Tereniak, S.; Donley, C.; Smith, A.; Jeon, S.; Zhao, F.; Sampaio, R.; Pauly, M.; Keller, L.; Collins, L.; Parsons, G.; Lian, T.; Stach, E.; Maggard, P. A. Discovery of a Hybrid System for Photocatalytic CO2 Reduction via Attachment of a Molecular Cobalt-Quaterpyridine Complex to a Crystalline Carbon Nitride. ACS Appl. Energy Materials. 2023, 6 (20), 10542-10553. https://doi.org/10.1021/acsaem.3c01670.
![Well-Defined Iron Sites in Crystalline Carbon Nitride](https://images.squarespace-cdn.com/content/v1/62a2221d5a239f16b5de994f/1698678372766-8NZRZ4JV51K25L0SJHKI/Holland_Maggard+TOC.jpeg)
Well-Defined Iron Sites in Crystalline Carbon Nitride
Genoux, A.; Pauly, M.; Rooney, C. L.; Choi, C.; Shang, B.; McGuigan, S. Fataftah, M. S.; Kayser, Y.; Suhr, S. C. B.; DeBeer, S.; Wang, H.; Maggard, P. A.; Holland, P. L. Well-Defined Iron Sites in Crystalline Carbon Nitride. J. Am. Chem. Soc. 2023, 145 (38), 20739–20744. https://doi.org/10.1021/jacs.3c05417.
![General Kinetic Model for pH Dependence of Proton-Coupled Electron Transfer: Application to an Electrochemical Water Oxidation System](https://images.squarespace-cdn.com/content/v1/62a2221d5a239f16b5de994f/1695062255982-K6KMP2KA3WCT62MJ1UH6/Hammes-Schiffer+2023+TOC.jpeg)
General Kinetic Model for pH Dependence of Proton-Coupled Electron Transfer: Application to an Electrochemical Water Oxidation System
Cui, K.; Soudackov, A. V.; Kessinger, M. C.; Xu, J.; Meyer, G. J.; Hammes-Schiffer, S. General Kinetic Model for pH Dependence of Proton-Coupled Electron Transfer: Application to an Electrochemical Water Oxidation System. J. Am. Chem. Soc. 2023, 145 (35), 19321–19332. https://doi.org/10.1021/jacs.3c05535
![Synthesis and Surface Attachment of Molecular Re(I) Hydride Species with Silatrane Functionalized Bipyridyl Ligands](https://images.squarespace-cdn.com/content/v1/62a2221d5a239f16b5de994f/1692813065143-GAXM9KRY7D6EP94FNLUM/images_large_om3c00235_0018.jpeg)
Synthesis and Surface Attachment of Molecular Re(I) Hydride Species with Silatrane Functionalized Bipyridyl Ligands
Jia, X.; Cui, K.; Alverez-Hernandez, J. L.; Donley, C. L.; Gang, A.; Hammes-Sciffer, S.; Hazari, N.; Jeon, S.; Mayer, J. M.; Nedzbala, H. S.; Shang, B.; Stach, E. A.; Stewart-Jones, E.; Wang, H.; Williams, A. Synthesis and Surface Attachment of Molecular Re(I) Hydride Species with Silatrane Functionalized Bipyridyl Ligands. Organometallics, 2023, 42 (16), 2238-2250. https://doi.org/10.1021/acs.organomet.3c00235
![Ethanol Upgrading to n-Butanol Using Transition-Metal-Incorporated Poly(triazine)imide Frameworks](https://images.squarespace-cdn.com/content/v1/62a2221d5a239f16b5de994f/1692812584941-NIB8W60IJ1WAVL2XQHE3/Cypher+TOC.jpeg)
Ethanol Upgrading to n-Butanol Using Transition-Metal-Incorporated Poly(triazine)imide Frameworks
Cypher, S. M.; Pauly, M.; Castro, L. G.; Donley, C. L.; Maggard, P. A.; Goldberg, K. I. Ethanol Upgrading to n-Butanol Using Transition-Metal-Incorporated Poly(triazine)imide Frameworks. ACS Appl. Mater. Interfaces 2023, 15 (30) 36384–36393. https://doi.org/10.1021/acsami.3c07396
![Direct Vibrational Stark Shift Probe of Quasi-Fermi Level Alignment in Metal Nanoparticle Catalyst-Based Metal–Insulator–Semiconductor Junction Photoelectrodes](https://images.squarespace-cdn.com/content/v1/62a2221d5a239f16b5de994f/1687533870189-S7XTBV08KKHGOWI4EO5V/Mallouk_Lian+TOC.jpeg)
Direct Vibrational Stark Shift Probe of Quasi-Fermi Level Alignment in Metal Nanoparticle Catalyst-Based Metal–Insulator–Semiconductor Junction Photoelectrodes
Suo, S.; Sheehan, C.; Zhao, F.; Xiao, L.; Xu, Z.; Meng, J.; Mallouk, T. E.; Lian, T. Direct Vibrational Stark Shift Probe of Quasi-Fermi Level Alignment in Metal Nanoparticle Catalyst-Based Metal–Insulator–Semiconductor Junction Photoelectrodes. J. Am. Chem. Soc., 2023, 145 (26) 14260-14266. https://doi.org/10.1021/jacs.3c02333
![Solar-Driven CO₂ Conversion via Optimized Photothermal Catalysis in a Lotus Pod Structure](https://images.squarespace-cdn.com/content/v1/62a2221d5a239f16b5de994f/1685634676051-2G2FQISXEY0709KDRM5F/Wang_Stach+2023.png)
Solar-Driven CO₂ Conversion via Optimized Photothermal Catalysis in a Lotus Pod Structure
Wang, H.; Fu, S.; Shang, B.; Jeon, S.; Zhong, Y.; Harmon, N. J.; Choi, C.; Stach, E.; Wang, H. Solar-Drive CO2 Conversion via Optimized Photothermal Catalysis in a Lotus Pod Structure. Angew. Chem. Int. Ed. 2023, 62 (30), e202305251. https://doi.org/10.1002/anie.202305251
![Lewis Acids and Electron-Withdrawing Ligands Accelerate CO Coordination to Dinuclear Cu(I) Compounds](https://images.squarespace-cdn.com/content/v1/62a2221d5a239f16b5de994f/1685652818180-NVWT8Y61IZTMUPHIVGUG/Walter_Mawuli+2023.jpeg)
Lewis Acids and Electron-Withdrawing Ligands Accelerate CO Coordination to Dinuclear Cu(I) Compounds
Johnsen, W. D.; Deegbey, M.; Grills, D. C.; Polyansky, D. E.; Goldberg, K. I.; Jakubikova, E.; Mallouk, T. E. Lewis Acids and Electron-Withdrawing Ligands Accelerate CO Coordination to Dinuclear Cu(I) Compounds Inorg. Chem. 2023, 62 (23) 9146-9157. https://doi.org/10.1021/acs.inorgchem.3c01003
![Synthesis of new chelating phosphines containing an aryl chloride group](https://images.squarespace-cdn.com/content/v1/62a2221d5a239f16b5de994f/1684770559770-TB5N26WWF6RM9WW74B9T/Genoux_TOC.png)
Synthesis of new chelating phosphines containing an aryl chloride group
Genoux, A.; DiPrimio, D. J.; Tereniak, S. J.; Holland, P. Synthesis of new chelating phosphines containing an aryl chloride group. Synthesis 2023, In press. https://doi.org/10.1055/a-2090-8316
![Multi-Electron Transfer at H-Terminated p-Si Electrolyte Interfaces: Large Photovoltages under Inversion Conditions](https://images.squarespace-cdn.com/content/v1/62a2221d5a239f16b5de994f/1684766731106-NNM4SHUYR5XZIY2EHJJG/Keller_TOC.jpeg)
Multi-Electron Transfer at H-Terminated p-Si Electrolyte Interfaces: Large Photovoltages under Inversion Conditions
Keller, N. D.; Vechi, P.; Grills, D. C.; Polyansky, D. E.; Bein, G. P.; Dempsey, J. L.; Cahoon, J. F.; Parsons, G. N.; Sampaio, R. N.; Meyer, G. J. Multi-Electron Transfer at H-Terminated p-Si Electrolyte Interfaces: Large Photovoltages under Inversion Conditions. J. Am. Chem. Soc. 2023, 145 (20), 11282-11292. https://doi.org/10.1021/jacs.3c01990
![A Dicationic fac-Re(bpy)(CO)₃Cl for CO₂ Electroreduction at a Reduced Overpotential](https://images.squarespace-cdn.com/content/v1/62a2221d5a239f16b5de994f/1684766261218-WBR3RLNG64XJQHYQEJI4/Rotundo_Ahmad+TOC.jpeg)
A Dicationic fac-Re(bpy)(CO)₃Cl for CO₂ Electroreduction at a Reduced Overpotential
Rotundo, L.; Ahmad, S.; Cappuccino, C.; Polyansky, D. E.; Ertem, M. Z.; Manbeck, G. F. A Dicationic fac-Re(bpy)(CO)₃Cl for CO₂ Electroreduction at a Reduced Overpotential. Inorg. Chem. 2023, 62 (20), 7877-7889. https://doi.org/10.1021/acs.inorgchem.3c00624
![Synergizing Electron and Heat Flows in Photocatalyst for Direct Conversion of Captured CO₂](https://images.squarespace-cdn.com/content/v1/62a2221d5a239f16b5de994f/1680101093504-6JIKZ3C6BHG5SZ4RA71J/Wang_Lian_TOC.png)
Synergizing Electron and Heat Flows in Photocatalyst for Direct Conversion of Captured CO₂
Choi, C.; Zhao, F.; Hart, J.. L; Gao, Y.; Menges, F.; Rooney, C. L.; Harmon, N. J.; Shang, B.; Xu, Z.; Suo, S.; Sam, Q.; Cha, J. J.; Lian, T.; Wang, H. Synergizing Electron and Heat Flows in Photocatalyst for Direct Conversion of Captured CO₂ Angew. Chem. Int. Ed. 2023, 62, e202302152. https://onlinelibrary.wiley.com/doi/10.1002/anie.202302152
![Bonds over Electrons: Proton Coupled Electron Transfer at Solid–Solution Interfaces](https://images.squarespace-cdn.com/content/v1/62a2221d5a239f16b5de994f/1680092106593-XPVLDHCIGB8C9GKE2YYQ/Mayer_bonds+over+electrons.jpeg)
Bonds over Electrons: Proton Coupled Electron Transfer at Solid–Solution Interfaces
Mayer, J. M. J. Am. Chem. Soc. 2023, 145 (13) 7050-7064. https://doi.org/10.1021/jacs.2c10212
![In Situ Attenuated Total Reflectance Infrared Spectroelectrochemistry (ATR-IR-SEC) for the Characterization of Molecular Redox Processes on Surface-Proximal Doped Silicon ATR Crystal Working Electrode](https://images.squarespace-cdn.com/content/v1/62a2221d5a239f16b5de994f/1680270358624-GOT0XG9LFKRYS26VIZ5D/Grills_Bottum+TOC.jpeg)
In Situ Attenuated Total Reflectance Infrared Spectroelectrochemistry (ATR-IR-SEC) for the Characterization of Molecular Redox Processes on Surface-Proximal Doped Silicon ATR Crystal Working Electrode
Bottum, S. R; Teitsworth, T. S.; Han, Q.; Orr, A. D.; Jin-Sung Park, J.-S.; Jia, X.; Cappuccino, C.; Layne, B. H.; Hazari, N.; Concepcion, J. J.; Donley, C. L.; Polyansky, D. E.; Lockett, M. R.; Cahoon, J. F.; Grills, D. C. J. Phys. Chem. C 2023, 127 (14), 6690-6702. https://pubs.acs.org/doi/10.1021/acs.jpcc.2c08991
![Characterizing Density and Spatial Distribution of Trap States in Ta₃N₅ Thin Films for Rational Defect Passivation](https://images.squarespace-cdn.com/content/v1/62a2221d5a239f16b5de994f/1676300922161-DDH7QL6TB45S57A7GBFK/Lopez_TOC+2023.jpeg)
Characterizing Density and Spatial Distribution of Trap States in Ta₃N₅ Thin Films for Rational Defect Passivation
Rudd, P. N.; Tereniak, S. J.; Lopez, R. ACS Appl. Mater. Interfaces 2023, 15 (6), 7969–7977 https://doi.org/10.1021/acsami.2c19275
![Synthesis and Surface Attachment of Molecular Re(I) Complexes Supported by Functionalized Bipyridyl Ligands](https://images.squarespace-cdn.com/content/v1/62a2221d5a239f16b5de994f/1674741976626-3W21V9B575X04L3EQD0H/Jia_Nedzabala+TOC.jpeg)
Synthesis and Surface Attachment of Molecular Re(I) Complexes Supported by Functionalized Bipyridyl Ligands
Jia, X.; Nedzbala, H. S.; Bottum, S. R.; Cahoon, J. F.; Concepcion, J. J.; Donley, C. L.; Gang, A.; Han, Q.; Hazari, N.; Kessinger, M. C.; Lockett, M. R.; Mayer, J. M.; Mercado, B. Q.; Meyer, G. J.; Pearce, A. J.; Rooney, C. L.; Sampaio, R. N.; Shang, B.; Wang, H. Inorg. Chem. 2023, 62 (5) 2359-2375 https://doi.org/10.1021/acs.inorgchem.2c04137
![Quantum Confinement and Decoherence Effect on Excited Electron Transfer at the Semiconductor–Molecule Interface: A First-Principles Dynamics Study](https://images.squarespace-cdn.com/content/v1/62a2221d5a239f16b5de994f/1674159119164-02XXQ05L2YAKRJFHR0GG/Kanai+figure.jpeg)
Quantum Confinement and Decoherence Effect on Excited Electron Transfer at the Semiconductor–Molecule Interface: A First-Principles Dynamics Study
Wong, J. C.; Kanai, Y. J. Phys. Chem. C 2023, 127 (1), 532–541. https://doi.org/10.1021/acs.jpcc.2c05657
![Surface Immobilization of a Re(I) Tricarbonyl Phenanthroline Complex to Si(111) through Sonochemical Hydrosilylation](https://images.squarespace-cdn.com/content/v1/62a2221d5a239f16b5de994f/1674158954115-BNBQB7Q2BT0P1TZASCW2/Huffman_AMI.jpeg)
Surface Immobilization of a Re(I) Tricarbonyl Phenanthroline Complex to Si(111) through Sonochemical Hydrosilylation
Huffman, B. L.; Bein, G. P.; Atallah, H.; Donley, C. L.; Alameh, R. T.; Wheeler, J. P.; Durand, N.; Harvey, A. K.; Kessinger, M. C.; Chen, C. Y.; Fakhraai, Z.; Atkin, J. M.; Castellano, F. N.; Dempsey, J. L. Surface Immobilization of a Re(I) Tricarbonyl Phenanthroline Complex to Si(111) through Sonochemical Hydrosilylation. ACS Appl. Mater. Interfaces. 2023, 15, 984−996. https://doi.org/10.1021/acsami.2c17078
![Aqueous Photoelectrochemical CO₂ Reduction to CO and Methanol over a Silicon Photocathode Functionalized with a Cobalt Phthalocyanine Molecular Catalyst](https://images.squarespace-cdn.com/content/v1/62a2221d5a239f16b5de994f/1670946784125-4COFPB1UMK8IWG1SDCBW/Wang+ACIE+TOC.png)
Aqueous Photoelectrochemical CO₂ Reduction to CO and Methanol over a Silicon Photocathode Functionalized with a Cobalt Phthalocyanine Molecular Catalyst
Shang, B.; Rooney, C. L.; Gallagher, D. J.; Wang, B.; Krayev, A.; Shema, H.; Leitner, O.; Harmon, N. J.; Xiao, L.; Sheehan, C.; Bottum,. S. R.; Gross, E.; Cahoon, J. F.; Mallouk, T. E.; Wang, H. Angew. Chem. Int. Ed. 2023, 62, e202215213. https://doi.org/10.1002/anie.202215213