Characterizing Density and Spatial Distribution of Trap States in Ta₃N₅ Thin Films for Rational Defect Passivation
Rudd, P. N.; Tereniak, S. J.; Lopez, R. ACS Appl. Mater. Interfaces 2023, 15 (6), 7969–7977 https://doi.org/10.1021/acsami.2c19275
Synthesis and Surface Attachment of Molecular Re(I) Complexes Supported by Functionalized Bipyridyl Ligands
Jia, X.; Nedzbala, H. S.; Bottum, S. R.; Cahoon, J. F.; Concepcion, J. J.; Donley, C. L.; Gang, A.; Han, Q.; Hazari, N.; Kessinger, M. C.; Lockett, M. R.; Mayer, J. M.; Mercado, B. Q.; Meyer, G. J.; Pearce, A. J.; Rooney, C. L.; Sampaio, R. N.; Shang, B.; Wang, H. Inorg. Chem. 2023, 62 (5) 2359-2375 https://doi.org/10.1021/acs.inorgchem.2c04137
Surface Immobilization of a Re(I) Tricarbonyl Phenanthroline Complex to Si(111) through Sonochemical Hydrosilylation
Huffman, B. L.; Bein, G. P.; Atallah, H.; Donley, C. L.; Alameh, R. T.; Wheeler, J. P.; Durand, N.; Harvey, A. K.; Kessinger, M. C.; Chen, C. Y.; Fakhraai, Z.; Atkin, J. M.; Castellano, F. N.; Dempsey, J. L. Surface Immobilization of a Re(I) Tricarbonyl Phenanthroline Complex to Si(111) through Sonochemical Hydrosilylation. ACS Appl. Mater. Interfaces. 2023, 15, 984−996. https://doi.org/10.1021/acsami.2c17078
Efficient electrocatalytic valorization of chlorinated organic water pollutant to ethylene
Choi, C., Wang, X., Kwon, S. Hart, J. L.; Rooney, C. L.; Harmon, N. J.; Sam, Q. P.; Cha, J. J.; Goddard III, W. A.; Elimelech, M.; Wang, H. Nat. Nanotechnol. 2022 18, 160–167 https://doi.org/10.1038/s41565-022-01277-z
Reorganization Energies for Interfacial Proton-Coupled Electron Transfer to a Water Oxidation Catalyst
Kessinger, M.; Soudackov, A. V.; Schneider, J.; Bangle, R. E.; Hammes-Schiffer, S.; Meyer, G. J. J. Am. Chem. Soc. 2022, 144 (44), 20514–20524. https://doi.org/10.1021/jacs.2c09672
Accessing and Photo-Accelerating Low-Overpotential Pathways for CO₂ Reduction: A Bis-Carbene Ruthenium Terpyridine Catalyst
Assaf, E. A.; Gonell, S.; Chen, C-H.; Miller, A. J. M. ACS Catal. 2022, 12 (20) 12596–12606. https://doi.org/10.1021/acscatal.2c03651
An atomistic picture is worth a thousand words: New details on supported molecular catalysts
Stewart-Jones, E.; Kurtz, D. A. Matter 2022, 5 (8), 2553-2555. https://doi.org/10.1016/j.matt.2022.07.005
Discovery and Development of Semiconductors for Photoelectrochemical Energy Conversion
Maggard, P. A. Eds. Springer Nature: 2023; In Press, Aug 2022. ISBN-13: 978-3030637125; ISBN-10: 3030637123
Restructuring and integrity of molecular catalysts in electrochemical CO₂ reduction
Rooney, C.L.; Wu, Y.; Gallagher, D.J.; Wang, H. Nat. Sci. 2022, e20210628, https://doi.org/10.1002/ntls.20210628
Accelerating discovery of photoactive materials
Gregoire, J. M.; Ertem, M. Z. J. Phys. D: Appl. Phys. 2022, 55, 323003. https://doi.org/10.1088/1361-6463/ac6f97
Nuclear–electronic orbital approach to quantization of protons in periodic electronic structure calculations
Xu, J.; Zhou, R.; Tao, Z.; Malbon, C.; Blum, V.; Hammes-Schiffer, S.; Kanai, Y. J. Chem. Phys., 2022, 156, 224111. https://doi.org/10.1063/5.0088427
Monolayer Molecular Functionalization Enabled by Acid–Base Interaction for High-Performance Photochemical CO₂ Reduction
Shang, B.; Zhao, F.; Choi, C.; Jia, X.; Pauly, M.; Wu, Y.; Tao, Z.; Zhong, Y.; Harmon, N.; Maggard, P. A.; Lian, T.; Hazari, N.; Wang, H. ACS Energy Letters 2022, 7, 2265-2272. https://doi.org/10.1021/acsenergylett.2c01147
Unveiling the complex configurational landscape of the intralayer cavities in a crystalline carbon nitride
Pauly, M.; Kröger, J.; Duppel, V.; Murphey, C.; Cahoon, J.; Lotsch, B. V.; Maggard, P. A. Chem. Sci. 2022, 13, 3187-3193. https://doi.org/10.1039/D1SC04648A
Free Energy Dependencies for Interfacial Electron Transfer from Tin-Doped Indium Oxide (ITO) to Molecular Photoredox Catalysts
Bangle, R. E.; Schneider, J.; Loague, Q.; Kessinger, M.; Müller, A. V.; Meyer, G. J. ECS J. Solid State Sci. Technol. 2022, 11, 025003. https://iopscience.iop.org/article/10.1149/2162-8777/ac5169
Enabling Practical Nanoparticle Electrodeposition from Aqueous Nanodroplets
Reyes-Morales, J.; Vanderkwaak, B. T.; Dick, J. E. Nanoscale, 2022, 14, 2750-2757. https://doi.org/10.1039/D1NR08045H
Accessing Organonitrogen Compounds via C-N Coupling in Electrocatalytic CO₂ Reduction
Tao, Z.; Rooney, C. L.; Liang, Y.; Wang, H. J. Am. Chem. Soc. 2021, 143 (47) 19630-19642. https://doi.org/10.1021/jacs.1c10714
Electrochemical Reductive N-Methylation with CO Enabled by A Molecular Catalyst
Rooney, C.; Wu, Y.; Tao, Z.; Wang, H. J. Am. Chem. Soc. 2021, 143 (47), 19983-19991. https://doi.org/10.1021/jacs.1c10863
Mechanistic Investigation of a Visible Light Mediated Dehalogenation/ Cyclisation Reaction using Fe(III), Ir(III) & Ru(II) Photosensitizers
Aydogan, A.; Bangle, R. E.; Kreijger, S. D.; Dickenson, J. C., Singleton, M. L., Cauët, E.; Cadranel, A.; Meyer, G. J.; Elias, B.; Sampaio, R. N., Troian-Gautier, L. Catal. Sci. Technol. 2021, 11 (24), 8037-8051. https://doi.org/10.1039/D1CY01771C
Accessing Photoredox Transformations with an Iron(III) Photosensitizer and Green Light
Aydogan, A.; Bangle, R. E.; Cadranel, A.; Turlington, M. D.; Conroy, D. T.; Cauët, E.; Singleton, M. L.; Meyer, G. J.; Sampaio, R. N.; Elias, B.; Troian-Gautier, L. J. Am. Chem. Soc. 2021, 143 (38), 15661-15673. https://doi.org/10.1021/jacs.1c06081
Determining the Overpotential of Electrochemical Fuel Synthesis Mediated by Molecular Catalysts: Recommended Practices, Standard Reduction Potentials, and Challenges
Stratakes, B. M.; Dempsey, J. L.; Miller, A. J. M. ChemElectroChem. 2021, 8 (22), 4161-4180. https://doi.org/10.1002/celc.202100576
Top Downloaded Article in ChemElectroChem